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Abstract

In this paper, we study the geodesic curvature of intersection curve of two regular parametric
and two regular implicit surfaces in R3. Here the intersection curve will be of tangential type,
i.e., the normal vectors of the two surfaces at the given intersection point are linearly depen-
dent, while in case of transversal intersection, the normals of the intersecting surfaces at the

intersection point are linearly independent.
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1. Introduction

The intersection problems of surfaces is a fundamental process needed in modelling com-
plex shapes in CAD/CAM system. Intersections are useful in the representation of the design
of complex objects, in computer animations, and in NC machining for trimming off the region
bounded by self intersection curves of offset surfaces [14]. For that reason the two types of
surfaces commonly used in geometric modelling systems are parametric and implicit surfaces
that lead to three types of surface-surface intersection (SSI) problems: parametric-parametric,
implicit-implicit, implicit-parametric. The SSI is called transversal or tangential if the normal
vectors of the surfaces are linearly independent or linearly dependent, respectively at the inter-
section point. In transversal intersection problems, the tangent vectors of the intersection curve
can be found easily by the vector product of the normal vectors of the surfaces, while as in
tangential intersection case such derivation is not possible.

The geometric properties of the parametrically defined curves can be found in the classical
literature on differential geometry in [10, 12] and in the contemporary literature of geometric
modelling [4, 6]. Also the higher curvatures of curves in R” can be found in textbook [13]

and in paper [5]. On the other hand, for the differential geometry of the intersection curves,
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there exists little literature in which transversal intersection is mostly studied. Willmore [12]
obtained the unit tangent, the unit principal normal and unit binormal, as well as the curvature
and the torsion of the intersection curve of two implicit surfaces in R3. Ye and Maekawa [14]
gave algorithms for obtaining the Frenet apparatus of the intersection curves of two parametric
surfaces in R3. They also derived algorithms for the evaluation of higher order derivatives for
transversal as well as tangential intersections. Then Hartmann [2] gave formulae for computing
the curvature and geodesic curvature of the intersection curves of all the three types of intersec-
tion problems in R> using the implicit function theorem. Similarly Abdel-All et al.[8] provided
an algorithm for the evaluation of the Frenet apparatus of the intersection curves of two implicit
surfaces using implicit function theorem. Soliman et al.[7] obtained an algorithm for the Frenet
apparatus of the intersection curves of two surfaces (implicit-parametric) in R®. Goldmann [11]
derived closed formulae for computing the curvature and the torsion of the intersection curve
of two implicit surfaces in R3 and the curvature of the intersection curves in R"*!, In [1] B.U
Diildiil and M. Caliskan obtained the geodesic torsion of tangential intersection of two surfaces
in R3, while as looking at an important characteristic(geodesic), we tried to find the geodesic
curvature of tangential intersection of two regular parametric and implicit surfaces in R3.

2. Preliminaries

Definition 2.1. Let {e1,e),e3} be the standard basis of three dimensional Euclidean space R>.
The vector product of vectors x = Z?:l Xiej, y = Z?:l yie; is defined as

€1 e €3
XXYy=|X1 X2 X3 |- (D
yiroy2 y3

The vector product yields a vector that is orthogonal to x and y.

Definition 2.2. let M C E3 be a regular surface given by R = R(uy,u>) and o : I C R — M be
an arbitrary curve with arc length parametrisation. If {z,n,b} is the moving Frenet Frame along

a, then the Frenet formulas are given

' = kn
n = —kt+71bh 2)
bV = —1n

where the factor k is called curvature and 7 is called torsion. The torsion measures the rotation
of the Frame about the tangent vector. The first two derivatives of the curve & are given by
o =t and o’ =1t = kn. Also, since M is regular, the partial derivatives Ry, R, are linearly
independent at every point of M, i.e., Ry X Ry # 0, where R; = g—‘f’_.

On the other hand since the curve a(s) lies on M, we can write &(s) = R(u;(s),us(s)), then we
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have
a'(s) = Ryu)+Roudh. 3)
(X”(S) = R]](Mll)z—‘rlezullulz+R22(u/2)2+R1u/1/+R2M/2/. 4)
o”(s) = Runi(uh)® +3Ry2(u)) 2y + 3R 1001ty (uh) + Raza (1) + 3[Ry yuful]
R (uf uhy + uyul) + Rypuds iy + Ryu" + Rouds'. 3)

Definition 2.3. A unit surface normal vector of the parametric surface is defined as

N R1 XR2
Ry x Rafl”

Also, the normal curvature is obtained by projecting (4) onto N, i.e.,
K, = L(u})? + 2Muuy + N (uy)? (6)
where L, M, N are the second fundamental form coefficients.
Definition 2.4. The geodesic curvature of o/(s) at a point p is given by [3]
du1 2 1 du1 du2 du1 dblz 2
ke = F + (2, - — ) — F —2r] —
8 [ (ds) + (@I -T) ds d+( )ds ds

dM2 3 dul d2u2 d2u1 duz
—TI — =" <|\VEG-F? 7
22 < ds> T ds? ds ds ’ ™

where Fiik, (i, j,k = 1,2) are Christoffel symbols defined as follows:

1—- GEul _2FE11 +FE112 1—‘2 — 2EFul _EEuz_FEul
1= 2(EG-F%) » 11 2(EG-F%)
[l _ CEu—FGu o _ EGuy—FE, )
12 2(EG—F?) > 12 2(EG-F?2) >
2GFyuy—GGy, —FGy, EGy,~2FF,,+FGy,

= 2(EG-F2) [ = 20EG—F?)

and E, F and G are the first fundamental coefficients.

3. Algorithm for geodesic Curvature of tangential intersection curve of two parametric
surfaces.

Let M; and M, be two regular intersecting surfaces given by parametric equations R4 =
RA(uy,uz) and R® = RB(vy,v,), respectively, then the unit normal vector of these surfaces are
R x R}

Ni=_—L"—2 i=AB. )
R} X R,

We assume that the intersection of these surfaces is a smooth curve (s) with arc length
parametrisation and a(sg) = p be a point on the intersection curve. Now to find the geodesic

curvature of the tangential intersection curve with respect to R, from (7) we need to find the
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unknowns u} and u}, i = 1,2. Since the intersection is tangential, the tangent vector of the
intersection curve is given by

t = Rl + Ryuy = REV, + RSV, (10)
Suppose N; = N, = N(say), from k, = K.N, we get
LA (i) + 24 () + N (1) = LP () + 2M5 (V) + NP (v, (1)

where (LA, MA,N*) and (LB, M5B N®) are the second fundamental coefficients of R* and R®,
respectively.

Equations (10) and (11) form a system of four nonlinear equations in four unknowns
(u},uy,v|,v). This nonlinear system can be solved by representing v} and v} in terms of
linear combinations of «} and u}, from (10) and then substituting the results in (11). Taking the
cross product of both sides of (10) with Rf and Rg , and projecting the resulting equations onto
the common surface normal N at p, we have

Vll = 5111,{/1 —|—512u/2, (12)
Vh = &ruy + iy, (13)
where
e (RExRE)-N /EBGP — (FB)?'
7 (REXRE) N~ /EBGE _ (FB)?’
5 — (RY xR})-N _ det(R},R}\N) 16)
(R® <RE)-N~ \/EBGB — (FB)Z’
(RE < RN der(RE,RAN)
02 = B BB\ N~ /7B By2' an
(R xR3)-N  \/EBGB — (FB)
Substituting (12) and (13) in (11), we obtain
Y1 (1) + 202(u ) (1h) + 12 (u)* = 0, (18)

where

N1 SHLB +28,, 8, MP + 53, NB — 14,
Yio = 811812L% +2(81182 + 821 812)MP + 81 5N® — M4,
Y22 5]22LB +2812822MB + 5222NB —NA.

Denoting p = ;,‘r when c;; #0Oor = Z/% when by} = 0 and by, # 0 and solving (18) for p or
2 1
U, then ¢ can be computed by means of either of the following
_ PRY+RS _ R+ uRy

=02 o L T2 (19)
[PR} + RS | R+ uR|
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Now since ¢ is known from (19), taking the dot product of (10) with R} and RS, we get the

unknowns u}, i = 1,2 by solving the following system of equations

(RY Ry + (R Ry =Ry -1,
(RY - Ry Jui + (RS - Ry )y = R) -1

Remark 3.1. The number of real intersection points of the surfaces arises four distinct cases of
(18).

LIf }/121 — Y1722 < 0, then (18) does not have any solution, hence the surfaces do not intersect
each other implying p is an isolated contact point of R4 and R5.

2If ¥}, — Ni1y2 = 0 and ¥, + ¥}, + 13, # O, then (18) has double root implying R and R?
have one point in common, hence the tangent direction is unique.

3. If y12] — Y172 > 0, then (18) has distinct roots. Then p is a branch point of the intersection
curve o(s).

4. If 1 = 712 = 122 =0, then (18) vanishes for any value of u'] and u'z. Thus R4 and R? overlap
and so has a contact of higher order at p.

To find the geodesic curvature of the tangential intersection curve with respect to surface R4,
we still need to find the second derivatives «, i = 1,2. The curvature vector of the intersection
curve o(s) at point p can be expressed as

(20)

a’(s) = Ry, (uy)? + 2R u iy + RS, (uh)* + Riu!] + RO
= R}, (V))? + 2RV +R5, (Vh)? + RYv] + R3vs.

In (20), we have four unknowns (u{,u},v},V5), thus to obtain them we need four equations.
Rewrite (20) as

R + Ryu| = RBV + REV) +-Q, (21)
where

Q= R, (1)? +2RDVivh + R (v)? — Ril (1) — 2Ry (1) (uh) — Roy (). (22)

Taking the cross product of (21) with Rg and Rf and projecting onto the unit surface normal,
we get
Vi = 811uf + 8ious + 813, (23)

Vo = Soyu{ + 8V + 623, 24

where 8,1, 812, 61, 02 are coefficients defined in (14) — (17), and J;3, 523 are the coefficients

defined as follows
_ (RExQ)-N  det(RE,Q,N)

613_(le><R§)~N_ m» (25)
B B
5, (QXRDN _ det(RE.QN) 06

(R¥xR5)-N  \/EBGB — (FB)2
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Since the curvature vector & is orthogonal to tangent vector ¢, therefore we have
o -t = quui +qoub +q3 =0, (27)

where g1 = (R} 1), q2= (R} 1), g3 = (R -1)(u})* +2(R} - )ity ity + (R, - 1) (u ).
To find (uf,u’) the last equation can be found by differentiating a(s) = R (u;(s),ua(s)) =
RB(v1(s),v2(s)) three times and projecting onto the common normal vector N. Thus from (5),

we get
3L ] + M () udy 4+ udy) + Ny + 111 =
3[LBVIV] + MB(VIVE vV + NBVVE 4 1TTE, (28)
where
I =Ry - N () +3RY 5 - N (i) )y + 3Ry - Nty () + Ry - N (),
and
1P = RYy - NP () +3RY)5 - NP (vV))?Vh + 3RPy - NPV (v)° + Ry - NP ().
Example 3.1. Consider the two surfaces R* and R® given by parametric equations
RA = (cosuy —cosuy cosup +sinug sinuy, 3 sinu) —sinuy cosuy —cosuy sinup,sinuy); 0 <wup,uy <2m,
RE = (2cosvy,2sinvy,vp); 0 <vp,vy <2m.

Let p = RA(0,0) = RB(0,0) = (2,0,0) be a point on the intersection curve of R* and RP.
The non-vanishing partial derivatives of the surface R* are given by

R?:(072a0)7 R?:(07_171)a R?zz(lvovo)v Rézz(lvoao)v

R?ll =(0,-2,0), R?IZZ(Ovlvo)v R?ZZZ (0,1,0), R922:(0717_1)'

Hence the unit normal vector for R? is obtained as
N =(1,0,0). (29)
The first and second fundamental coefficients of R* are
EA=4, FA=_2 G'=2, I1"=0, M =N'=1.

Similarly the non-vanishing partial derivatives of the surface R5 are
RE =1(0,2,0), RE =1(0,0,1), RE, =(-2,0,0), RE, = (0,-2,0).
The first and second fundamental coefficients of the surface RS are

Ef=4, G"=1, FP=0, P=-2, M'=N"=0

Also the unit normal to the surface RE is

NB =(1,0,0). (30)
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Therefore from (29) and (30) we see that the intersection is tangential at p.

Using the above algorithm, we obtain
uy =0.698795, uh =0.806898, V| =0.806898, V) =0.295345.
From (19) the unit tangent of the intersection curve is given by
t = (0,0.590691,0.806898).
Using the above algorithm again, we easily obtain
ul =uy =0.

Therefore from (8), we obtain

3
4’

—1 —1 1 1 3
I = Tvr%l = TIlIz = Ear%z =Ty = 171%2 =7

Consequently, we obtain KgA = 0.833502(See figure 1). Similarly, we can find the geodesic

curvature of the intersection curve with respect to RP.

Figure 1:

Example 3.2. Consider two parametric surfaces R* and R® given by
R = (sinuy cosuy,sinuy sinuy,cosup); 0 < uy,upy <27,

RB = (cosv| cosvy,sinvy cosva, —sinvy); 0 < vy, vy <27,

Then at point p, we have

p=R0,1/2) = R*(0,0) = (1,0,0).
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The unit normals are given by N* = N® = (—1,0,0), implying the intersection is tangential.
Also from (18), we obtain ¥11 = Y12 = Y2 =0.
Thus, the surfaces have at least second order contact as it is evident by the overlapping of two

surfaces in figure 2 below.

0.5

45

Figure 2:

4. Algorithm for geodesic curvature of tangential intersection of two implicit surfaces

Let R = RA(x1,x2,x3) = 0 and R® = RB(x1,x2,x3) = 0 be two implicit surfaces, then the
geodesic curvature of the tangential intersection curve with respect to surface R is given by
(9]

1
K= TRAT 0243~ X525 RY + (] — 253 )RS + ()] — x{xh )RS (31)

Thus, to find the the geodesic curvature of the intersection curve with respect to RA, we have to
find (x},x5,x5) and (x{,x},x}). For that, we find the tangent vector and curvature vector.

Definition 4.1. The unit normal vector of implicit surfaces R and R® are defined as

A_ VR NP — VRE
[VRA| [VRE||

_ (9 9 - - P 1 A|NB
where V = (;97” I E) . Also, since the intersection is tangential, it follows that N*||N”.

Consider a(x;) be a curve parameterised by x; and formed by the intersection of R and
RE at the tangential point p. Then by choosing the orientation of surfaces suitably, we have
VRA VRE

T = T (32)
IVRA ([ VRE]|
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A
Let u be the scalar function defined as (t = %, then (32) can be written as
VRA = uvRE. (33)

4.1. Tangent vector for the tangential intersection of two implicit surfaces.

The intersection curve o(x) of the implicit surfaces is given by
a(x1) = {a(x1,x2(x1),x3(x1))|[R* = 0N RE = 0}.
Now for R4 and RE, we have
VRY.a=0, VRP.a=0, VR'.&¢=—-a"Hwma and VRP.6=—a'Hwpa (34)

where VR (a(x1))=[RY, RY,R4)T, a=[lx, x)T,a=[0,%, x|7, &=[0,%, i3]7

and Hya and Hys are the Hessian matrices of R” and R® given by

A A A B pB B
Ry, Ry Ry Ry, Riy Ry

— A A pA — B pB pB
Hpa= | R}, RS, Ry; | and Hps= | R}, R5 R5;
A A A B B B

Ris Ry Ry Ri3 Ry Ry

Indeed for R4 - & = 0, we have

L (R o)) =0,

dxl
Rfl‘xl +R‘§x2 +R’§x3 =0,
VRY =0

and for VRA - & = —OCTHRA o, we have

d d 4
—|(—R =0
(R ) =o.
(R161 + Ry + Risks )by + Riy
(R + Royin + R )% + Ry
+(Riyt1 + Ryt + Riz3)%3 + Riks = 0,
VRY & (x1) + (e(x1)) Hpatt(x1) = 0.
Projecting é&(x;) onto the normal vector of R* and using (33), we obtain
((x1), VR) = p(e(xr), VRP). (35)
Using (34), we get
&l (Hpa — pWHgs )0 =0, (36)
or
(R — RS, ) (x2)* + (RS — RS3) (x3)” + 2(Rhs — RE3)xaxs
+2(Rily — uRT )% + 2(Rils — iR + (R — PRY)) = 0. (37)
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Since VR - & = 0, we have

R+ RYxy + Rix3 =0, (38)
which gives
L R ;:f 2 /o, (39)
Using (39) in (38), we get
dy1 (%2)* +2d12%p +dy3 =0, (40)

where

di = (RS —uR%)(R)* + (RS — uR%: ) (R)? — 2(R5s — RE;)RYRS,

din = (R§3—uRS;)RIRORS — (Ry3 — R5;)RIRS — (R, — URD) (RS)?
—(RY;y — URT;)RIRS,

dis = (RS —uR%)(RY)? —2(Ris — uRE;)RIRS + (R — uRY))(RY)*.

Thus (40) gives

—dip + din)? —dd
= 42 V(d12) udis 4o, @1

dn
Hence from (41) and (39), &(x;) is obtained, consequently the unit tangent vector is given by
t= %. Moreover, remark 1 also follows here.

4.2. Curvature vector for the tangential intersection of two implicit surfaces.

In this subsection, we find the second order derivatives &;, for that first we have the following
lemma.

Lemma 4.1. For an implicit surface R = R(x1,x2,x3) and a(x1) be a curve on R, then we have

Td

VR-G(x)) = —(&) d—(HR)Oc—3(Ot)THR(')'c (42)
x|
where .
d d d d .
= (Hg) = | ~—(HR) ——(Hr) ——(Hr)| -a(x),
dxl( ) 8x1( R) 8x2( R) 8x3( R) (x1)
Rii1 Ri21 Rz Rii2 Rz Riz Ri13 Rz Riss
d d d
%{?: Roii Ryt Rozi | 555 = | Roiz Ron Rom ,%;?: Ry13 Ry3 Rozs
R311 R3z21 Rasp R312 R3» Razn R313 R3z3 Rasz

Proof. Since, we have
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or

{(R111X1 + R112X2 + R113X3)X1 + R11%1 + (R121X1 + R122X2 + R123%3)X2 + R12%2
+(R131X1 + R132%2 + R133X3)%3 + R13%3 }X1 +2(R11X1 + R12X2 + R13x3)%1 + R1 X1
{(R112%1 + R122X%2 + R123X3)X1 + R12X1 + (R122X1 + R222X2 + R023X3)X2 + R22X5>
+(R123X1 4 Rap3x + R233X3) %3 + R2305 1 + 2(R 12X + RanXp + Ro3x3) x5 + Rp i3
{(R113X1 +R123X2 + R133X3)X1 + R13X7 + (R123X1 + R223X2 + R233%3)X2 + Rp3%5
+(Ri33%1 + Ra33x2 + R333X3)X3 + Ra3x2 }a3 + 2(Ri3%1 + Rz + R33x3) X3 + R3i3

or
((&0)T -2 (Hg) 0t + VR, - &)x1 +2(VR - 0% + R ]
d

8x1
+((oc)T—2 HR)O+ VR, - &)x2 +2(VRy - &0)xr +Rois p =0,
+((

(
X
&) 2 (HR) & + VR - &)x3 + 2(VR3 - 60)x3 + R33

8X3

The above can be reduced to

VR G+ (a)T%(HR)a 1+3(c0)T Hrét = 0.
1

which proves the lemma. O

Now in order to compute X;, projecting ¢(x;) onto normal vector and using (33), we
get
(6, VRYY = u(ci, VRE). (43)

Using (42), we obtain
—3(00)"Hp ot — (60)" ((VHa)ot) o = pu(—3(00)" Haét — ()" ((VHp)&r) ),

where (VH;)¢& = %(Hi(a(xl))),
or
3(&)T (Hga — wHgs )& = (6&0)7 ((WVHgs — VHpa )00 1. (44)

Now (44) and the last equation of (34) can be written as

l 3(00)T (Hga — uHgn) ] [2 ] _ [ ()7 (47 Hys — VHpa ) &) ]

VRE By — (&) " Hypx

or

B | | (@) ((uVHgs — VHga)&x)o _
l ]—«p ‘[ _(a’)*THRBaR ],rp L#£0, (45)

where

Equation (45) gives the desired derivative.

357
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Example 4.1. Consider two implicit surfaces given by

RA—1002 25, 25,

199 —7
X+ et e
and 25 25,
R =Gt ps =7

The normal vectors for R* and R are given by
VRA (@xl , %gxz, 2xg) VRE = ( 90x1 ,2x7, %x_g), respectively.
For the point of intersection p = (0,0,0.8) € RANRE, we have

VR = (0,0,1) and VR® = (0,0,1).

Thus the two surfaces intersects tangentially at p (see figure 3) and from (31) L = 1.
The non-vanishing first and second order coefficients for R* and R® are obtained as

5 200 25 25 50 25
R/;:Rg:? R?lZT, R?zZﬁa R§3=§» Rlﬂ:jv RS, =2, R§3:§~
Hence, we obtain - 625
dj=——, dp=0, diz=—
11 72 ) 12 ) 13 — 6

which implies that p is a branch point.

Thus from (39), (41), we obtain ¢ = (l,i%\ / %,O) and from (45), we obtain ¢, = (O 0, 3175135)

Consequently from (31), we obtain kgA = 0. Similarly, we can find kgB.

Figure 3:
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